
1

Bluetooth mesh
networking

An Introduction for Developers.
Mesh is a new network topology option available for Bluetooth® Low

Energy (LE) adopted in the summer of 2017. It represents a major

advance which positions Bluetooth to be the dominant low power

wireless communications technology in a wide variety of new sectors

and use cases, including Smart Buildings and Industrial IoT.

Bluetooth Mesh Networking / An Introduction for Developers

© 2017 Bluetooth SIG Proprietary. 2

table of
contents

Contributors

Martin Woolley
Author

Sarah Schmidt
Graphic Designer

1.0 Introduction . 4

2.0 Taking Control . 6
 2.1 Smart Buildings Get Truly Smart 7

3.0 Bluetooth Mesh — The Basics 8
 3.1 Concepts and Terminology 9

 3.2 Mesh vs. Point-to-Point 9

 3.3 Devices and Nodes 9

 3.4 Elements 10

 3.5 Messages 10

 3.6 Addresses 10

 3.7 Publish/Subscribe 11

 3.8 States and Properties 11

 3.9 Messages, States and Properties 12

 3.10 State Transitions 12

 3.11 Bound States 12

 3.12 Models 13

 3.13 Generics 13

 3.14 Scenes 13

 3.15 Provisioning 14

 3.16 Features 14

http://www.bluetooth.com

Bluetooth Mesh Networking / An Introduction for Developers

© 2017 Bluetooth SIG Proprietary. 3

3.0 Bluetooth Mesh — The Basics (cont.)
 3.17 Relay Nodes 15

 3.18 Low Power Nodes and Friend Nodes 15

 3.19 Proxy Nodes 15

 3.20 Node Configuration 16

4.0 Mesh System Architecture . 17
 4.1 Overview 18

 4.2 Bearer Layer 18

 4.3 Network Layer 18

 4.4 Lower Transport Layer 19

 4.5 Upper Transport Layer 19

 4.6 Access Layer 19

 4.7 Foundation Models 19

 4.8 Models 19

5.0 Security . 20
 5.1 Mesh Security is Mandatory 21

 5.2 Mesh Security Fundamentals 21

 5.3 Separation of Concerns and
 Mesh Security Keys 21

 5.4 Node Removal, Key Refresh and
 Trashcan Attacks 22

 5.5 Privacy 22

 5.6 Replay attacks 23

6.0 Bluetooth Mesh in Action . 24
 6.1 Message Publication and Delivery 25

 6.2 Multipath Delivery 25

 6.3 Managed Flooding 25

 6.4 Traversing the Stack 25

7.0 Bluetooth Mesh — New Frontiers 27
 7.1 References 28

back to contents Bluetooth Mesh Networking / An Introduction for Developers

1.0
introduction

© 2017 Bluetooth SIG Proprietary. 4

© 2017 Bluetooth SIG Proprietary. 5

back to contents Bluetooth Mesh Networking / An Introduction for Developers

1.0 Introduction

Bluetooth has been actively developed since its initial

release in 2000, when it was originally intended to

act as a cable replacement technology. It soon came

to dominate wireless audio products and computer

peripherals such as wireless mice and keyboards.

In 2010, Bluetooth LE provided the next, major step

forward. Its impact has been substantial and widely felt,

most notably in smartphones and tablets, as

well as in Health and Fitness, Smart Home and

Wearables categories.

Wireless communications systems based around mesh

network topologies have proved themselves to offer an

effective approach to providing coverage of large areas,

extending range and providing resilience. However, until

now they have been based upon niche technologies,

incompatible with most computer, smartphone and

accessory devices owned by consumers or used in

the enterprise.

120 Bluetooth SIG member companies participated in

the work required to bring mesh networking support to

Bluetooth. This is significantly more than is typically

the case, and is representative of the demand for

a global, industry standard for a Bluetooth mesh

networking capability.

The addition of mesh networking support represents a

change of a type, and of such magnitude that it warrants

being described as a paradigm shift for

Bluetooth technology.

back to contents Bluetooth Mesh Networking / An Introduction for Developers

2.0
taking control

© 2017 Bluetooth SIG Proprietary. 6

© 2017 Bluetooth SIG Proprietary. 7

back to contents Bluetooth Mesh Networking / An Introduction for Developers

2.0 Taking Control

Smart Buildings Get Truly Smart

Imagine arriving at the office in your car, early one dark,

winter morning. The security system lets you in and a

parking bay is automatically allocated to you. The bay

number over the parking space lights up so you can drive

easily to it. The parking bay allocation system is updated

to note that this space is now occupied.

Entering the building, occupancy sensors note your

arrival and identify you from the wearable technology

about your person. You take the elevator to the 2nd floor

and exit. You’re the first to arrive, as usual. As the lift

doors open, the lights from the elevator to your office

and the kitchen come on. Coffee is deemed of strategic

significance in your company! Other areas are left in

darkness to save power.

You walk to your office and enter, closing the door

behind you. The LED downlights and your desk lamp are

already on and at exactly the level you prefer. You notice

the temperature is a little warmer than the main office

space, reflecting your personal preference. Proximity

with your computer automatically logs you in.

Your day started well, with the building responding to

your needs, taking into account your preferences. It’s

clear that systems are being used efficiently. What made

this possible?

Your company installed a Bluetooth mesh network

some months ago, starting with a mesh lighting system.

Later the mesh was added to with occupancy sensors,

environmental sensors, a wireless heating control

system, and a mesh-based car park management

system. The company is saving money on electricity

and heating, and work environments have become

personalized, boosting personal productivity.

Maintenance costs are going down since adding items

like additional light switches no longer requires

expensive and disruptive physical wiring. Data is allowing

the building management team to learn about the

building, its services and how people act within it and

are using this data to make optimizations.

The Bluetooth mesh network has made it easier

and cheaper to be in control of building services, to

wirelessly interact with them and to automate their

behaviors. You wonder how you ever lived without such

advanced building technology in the past!

Figure 1 - A Bluetooth mesh network could span the office and
 car park

back to contents Bluetooth Mesh Networking / An Introduction for Developers

3.0
Bluetooth
mesh — the
basics

© 2017 Bluetooth SIG Proprietary 8

© 2017 Bluetooth SIG Proprietary. 9

back to contents Bluetooth Mesh Networking / An Introduction for Developers

3.0 Bluetooth Mesh — The Basics

Concepts and Terminology

Understanding Bluetooth mesh networking topology

requires the reader to learn about a series of new

technical terms and concepts, not found in the world

of Bluetooth LE. In this section, we’ll explore the most

fundamental of these terms and concepts.

Mesh vs. Point-to-Point

Most Bluetooth LE devices communicate with each other

using a simple point-to-point network topology enabling

one-to-one device communications. In the Bluetooth

core specification, this is called a ‘piconet.’

Imagine a smartphone that has established a point-to-

point connection to a heart rate monitor over which

it can transfer data. One nice aspect of Bluetooth is

that it enables devices to set up multiple connections.

That same smartphone can also establish a point-to-

point connection with an activity tracker. In this case,

the smartphone can communicate directly with each

of the other devices, but the other devices cannot

communicate directly with each other.

In contrast, a mesh network has a many-to-many

topology, with each device able to communicate with

every other device in the mesh (we’ll examine that

statement more closely later on in the section entitled

“Bluetooth mesh in action”). Communication is achieved

using messages, and devices are able to relay messages

to other devices so that the end-to-end communication

range is extended far beyond the radio range of each

individual node.

Devices and Nodes

Devices which are part of a mesh network are

 called nodes and those which are not are called

“unprovisioned devices”.

The process which transforms an unprovisioned device

into a node is called “provisioning”. Consider purchasing

a new Bluetooth light with mesh support, bringing it

home and setting it up. To make it part of your mesh

network, so that it can be controlled by your existing

Bluetooth light switches and dimmers, you would need to

provision it.

Provisioning is a secure procedure which results in an

unprovisioned device possessing a series of encryption

keys and being known to the Provisioner device, typically

a tablet or smartphone. One of these keys is called the

network key or NetKey for short. You can read more

about mesh security in the Security section, below.

All nodes in a mesh network possess at least one NetKey

and it is possession of this key which makes a device

a member of the corresponding network and as such,

a node. There are other requirements that must be

satisfied before a node can become useful, but securely

acquiring a NetKey through the provisioning process is

Figure 2 - A many to many topology with message relaying

© 2017 Bluetooth SIG Proprietary. 10

back to contents Bluetooth Mesh Networking / An Introduction for Developers

a fundamental first step. We’ll review the provisioning

process in more detail in a later section of this paper.

Elements
Some nodes have multiple, constituent parts, each of

which can be independently controlled. In Bluetooth

mesh terminology, these parts are called elements.

Figure 3 shows an LED lighting product which if added

to a Bluetooth mesh network, would form a single node

with three elements, one for each of the individual

LED lights.

Messages
When a node needs to query the status of other

nodes or needs to control other nodes in some way, it

sends a message of a suitable type. If a node needs to

report its status to other nodes, it sends a message.

All communication in the mesh network is “message-

oriented” and many message types are defined, each

with its own, unique opcode.

Messages fall within one of two broad categories;

acknowledged or unacknowledged.

Acknowledged messages require a response from nodes

that receive them. The response serves two purposes: it

confirms that the message it relates to was received, and

it returns data relating to the message recipient to the

message sender.

The sender of an acknowledged message may resend

the message if it does not receive the expected

response(s) and therefore, acknowledged messages

must be idempotent. This means that the effect of

a given acknowledged message, arriving at a node

multiple times, will be the same as it had only been

received once.

Unacknowledged messages do not require a response.

Addresses
Messages must be sent from and to an address.

Bluetooth mesh defines three types of address.

A unicast address uniquely identifies a single element.

Unicast addresses are assigned to devices during the

provisioning process.

A group address is a multicast address which represents

one or more elements. Group addresses are either

defined by the Bluetooth Special Interest Group (SIG)

and are known as SIG Fixed Group Addresses or are

assigned dynamically. 4 SIG Fixed Group Addresses have

been defined. These are named All-proxies, All-friends,

All-relays and All-nodes. The terms Proxy, Friend, and

Relay will be explained later in this paper.

It is expected that dynamic group addresses will be

established by the user via a configuration application

and that they will reflect the physical configuration

of a building, such as defining group addresses which

correspond to each room in the building.

A virtual address is an address which may be assigned

to one or more elements, spanning one or more nodes.

It takes the form of a 128-bit UUID value with which

any element can be associated and is much like a label.

Figure 3 - Lighting node consisting of three elements

© 2017 Bluetooth SIG Proprietary. 11

back to contents Bluetooth Mesh Networking / An Introduction for Developers

Virtual addresses will likely be preconfigured at the

point of manufacture and be used for scenarios such

as allowing the easy addressing of all meeting room

projectors made by this manufacturer.

Publish/Subscribe
The act of sending a message is known as publishing.

Nodes are configured to select messages sent to

specific addresses for processing, and this is known

as subscribing.

Typically, messages are addressed to group or virtual

addresses. Group and virtual address names will have

readily understood meaning to the end user, making

them easy and intuitive to use.

In Figure 4, above, we can see that the node “Switch

1” is publishing to group address Kitchen. Nodes Light

1, Light 2, and Light 3 each subscribe to the Kitchen

address and therefore receive and process messages

published to this address. In other words, Light 1, Light

2, and Light 3 can be switched on or off using Switch 1.

Switch 2 publishes to the group address Dining Room.

Light 3 alone subscribed to this address and so is the

only light controlled by Switch 2. Note that this example

also illustrates the fact that nodes may subscribe to

messages addressed to more than one distinct address.

This is both powerful and flexible.

Similarly, notice how both nodes Switch 5 and Switch 6

publish to the same Garden address.

The use of group and virtual addresses with the publish/

subscribe communication model has an additional,

substantial benefit in that removing, replacing or

adding new nodes to the network does not require

reconfiguration of other nodes. Consider what would

be involved in installing an additional light in the dining

room. The new device would be added to the network

using the provisioning process and configured to

subscribe to the Dining Room address. No other nodes

would be affected by this change to the network. Switch

2 would continue to publish messages to Dining Room

as before but now, both Light 3 and the new light

would respond.

States and Properties
Elements can be in various conditions and this is

represented in Bluetooth mesh by the concept of

state values.

Publish

Subscribe

Kitchen Dining Room Hallway Bedroom Garden

Figure 4 - Publish/Subscribe

© 2017 Bluetooth SIG Proprietary. 12

back to contents Bluetooth Mesh Networking / An Introduction for Developers

A state is a value of a certain type, contained within an

element (within a server model - see below). As well as

values, States also have associated behaviors and may

not be reused in other contexts.

As an example, consider a simple light which may either

be on or off. Bluetooth mesh defines a state called

Generic OnOff. The light would possess this state item

and a value of On would correspond to and cause the

light to be illuminated whereas a Generic OnOff state

value of Off would reflect and cause the light to be

switched off.

The significance of the term Generic will be

discussed later.

Properties are similar to states in that they contain

values relating to an element. But they are significantly

different to states in other ways.

Readers who are familiar with Bluetooth LE will be

aware of characteristics and recall that they are data

types with no defined behaviors associated with them,

making them reusable across different contexts.

A property provides the context for interpreting

a characteristic.

To appreciate the significance and use of contexts as

they relate to properties, consider for example, the

characteristic Temperature 8, an 8-bit temperature

state type which has a number of associated properties,

including Present Indoor Ambient Temperature and

Present Outdoor Ambient Temperature. These two

properties allow a sensor to publish sensor readings in

a way that allows a receiving client to determine the

context the temperature value has, making better sense

of its true meaning.

Properties are organized into two categories:

Manufacturer, which is a read-only category and Admin

which allows read-write access.

Messages, States and Properties
Messages are the mechanism by which operations on

the mesh are invoked. Formally, a given message type

represents an operation on a state or collection of

multiple state values. All messages are of three broad

types, reflecting the types of operation which Bluetooth

mesh supports. The shorthand for the three types is

GET, SET and STATUS.

GET messages request the value of a given state from

one or more nodes. A STATUS message is sent in

response to a GET and contains the relevant state value.

SET messages change the value of a given state. An

acknowledged SET message will result in a STATUS

message being returned in response to the SET message

whereas an unacknowledged SET message requires

no response.

STATUS messages are sent in response to GET

messages, acknowledged SET messages or

independently of other messages, perhaps driven by a

timer running on the element sending the message,

for example.

Specific states referenced by messages are inferred

from the message opcode. Properties on the other hand,

are referenced explicitly in generic property related

messages using a 16-bit property ID.

State Transitions
Changes from one state to another are called state

transitions. Transitions may be instantaneous or execute

over a period of time called the transition time. A state

transition is likely to have an effect on the application

layer behavior of a node.

Bound States
Relationships may exist between states whereby a

change in one triggers a change in the other. Such a

relationship is called a state binding. One state may be

bound to multiple other states.

© 2017 Bluetooth SIG Proprietary. 13

back to contents Bluetooth Mesh Networking / An Introduction for Developers

For example, consider a light controlled by a dimmer

switch. The light would possess the two states, Generic

OnOff and Generic Level with each bound to the other.

Reducing the brightness of the light until Generic Level

has a value of zero (fully dimmed) results in Generic

OnOff transitioning from On to Off.

Models
Models pull the preceding concepts together and

define some or all of the functionality of an element as it

relates to the mesh network. Three categories of model

are recognized.

A server model defines a collection of states, state

transitions, state bindings and messages which the

element containing the model may send or receive. It

also defines behaviors relating to messages, states and

state transitions.

A client model does not define any states. Instead, it

defines the messages which it may send or receive

in order to GET, SET or acquire the STATUS of states

defined in the corresponding server model.

Control models contain both a server model, allowing

communication with other client models and a client

model which allows communication with server models.

Models may be created by extending other models. A

model which is not extended is called a root model.

Models are immutable, meaning that they may not be

changed by adding or removing behaviors. The correct

and only permissible approach to implementing new

model requirements is to extend the existing model.

Generics
It is recognized that many different types of device,

often have semantically equivalent states, as

exemplified by the simple idea of ON vs OFF. Consider

lights, fans and power sockets, all of which can be

switched on or turned off.

Consequently, the Bluetooth mesh model specification,

defines a series of reusable, generic states such as, for

example, Generic OnOff and Generic Level.

Similarly, a series of generic messages that operate

on the generic states are defined. Examples include

Generic OnOff Get and Generic Level Set.

Generic states and generic messages are used in

generalized models, both generic server models such

as the Generic OnOff Server and Generic Client Models

such as the Generic Level Client.

Generics allow a wide range of device type to support

Bluetooth mesh without the need to create new models.

Remember that models may be created by extending

other models too. As such, generic models may form

the basis for quickly creating models for new types

of devices.

Scenes
A scene is a stored collection of states which may be

recalled and made current by the receipt of a special

type of message or at a specified time. Scenes are

identified by a 16-bit Scene Number, which is unique

within the mesh network.

Scenes allow a series of nodes to be set to a given

set of previously stored, complimentary states in one

coordinated action.

models

ServerGeneric OnOff
Server

Generic OnOff
Client

13 June 2017 / Bluetooth SIG Proprietary 34

Define node functionality

Define States, Messages, State Transitions
and Behaviors

Client, Server and Control types

Figure 5 - Generic Models

© 2017 Bluetooth SIG Proprietary. 14

back to contents Bluetooth Mesh Networking / An Introduction for Developers

Imagine that in the evening, you like the temperature in

your main family room to be 20 degrees Celsius, the six

LED downlights to be at a certain brightness level and

the lamp in the corner of the room on the table, set to a

nice warm yellow hue. Having manually set the various

nodes in this example scenario to these states, you can

store them as a scene using a configuration application,

and recall the scene later on, either on demand by

sending an appropriate, scene-related mesh message or

automatically at a scheduled time.

Provisioning
Provisioning is the process by which a device joins the

mesh network and becomes a node. It involves several

stages, results in various security keys being generated

and is itself a secure process.

Provisioning is accomplished using an application on a

device such as a tablet. In this capacity, the device

used to drive the provisioning process is referred to as

the Provisioner.

The provisioning process progresses through five steps

and these are described next.

Step 1. Beaconing
 In support of various different Bluetooth mesh

 features, including but not limited to provisioning,

 new GAP AD types (ref: Bluetooth Core Specification

 Supplement) have been introduced, including the

 <<Mesh Beacon>> AD type.

 An unprovisioned device indicates its availability to

 be provisioned by using the <<Mesh Beacon>> AD

 type in advertising packets. The user might need

 to start a new device advertising in this way by, for

 example, pressing a combination of buttons or holding

 down a button for a certain length of time.

Step 2. Invitation

 In this step, the Provisioner sends an invitation to the

 device to be provisioned, in the form of a Provisioning

 Invite PDU. The Beaconing device responds with

 information about itself in a Provisioning

 Capabilities PDU.

Step 3. Exchanging Public Keys
 The Provisioner and the device to be provisioned,

 exchange their public keys, which may be static or

 ephemeral, either directly or using an out-of-band

 (OOB) method.

Step 4. Authentication
 During the authentication step, the device to be

 provisioned outputs a random, single or multi-digit

 number to the user in some form, using an action

 appropriate to its capabilities. For example, it might

 flash an LED several times. The user enters the digit(s)

 output by the new device into the Provisioner and a

 cryptographic exchange takes place between the two

 devices, involving the random number, to complete

 the authentication of each of the two devices to

 the other.

Step 5. Distribution of the Provisioning Data
 After authentication has successfully completed, a

 session key is derived by each of the two devices from

 their private keys and the exchanged, peer public

 keys. The session key is then used to secure the

 subsequent distribution of the data required to

 complete the provisioning process, including a

 security key known as the network key (NetKey).

 After provisioning has completed, the provisioned

 device possesses the network’s NetKey, a mesh

 security parameter known as the IV Index and a

 Unicast Address, allocated by the Provisioner. It is

 now known as a node.

Features
All nodes can transmit and receive mesh messages but

there are a number of optional features which a node

may possess, giving it additional, special capabilities.

There are four such optional features: the Relay, Proxy,

Friend, and the Low Power features. A node may

© 2017 Bluetooth SIG Proprietary. 15

back to contents Bluetooth Mesh Networking / An Introduction for Developers

support zero or more of these optional features and any

supported feature may, at a point in time, be enabled

or disabled.

Relay Nodes
Nodes which support the Relay feature, known as

Relay nodes, are able to retransmit received messages.

Relaying is the mechanism by which a message can

traverse the entire mesh network, making multiple

“hops” between devices by being relayed.

Mesh network PDUs include a field called TTL (Time

To Live). It takes an integer value and is used to limit

the number of hops a message will make across the

network. Setting TTL to 3, for example, will result in

the message being relayed, a maximum number of

three hops away from the originating node. Setting

it to 0 will result in it not being relayed at all and

only traveling a single hop. Armed with some basic

knowledge of the topology and membership of the

mesh, nodes can use the TTL field to make more

efficient use of the mesh network.

Low Power Nodes and Friend Nodes
Some types of node have a limited power source

and need to conserve energy as much as possible.

Furthermore, devices of this type may be predominantly

concerned with sending messages but still have a need

to occasionally receive messages.

Consider a temperature sensor which is powered by a

small coin cell battery. It sends a temperature reading

once per minute whenever the temperate is above or

below configured upper and lower thresholds. If the

temperature stays within those thresholds it sends no

messages. These behaviors are easily implemented

 with no particular issues relating to power

consumption arising.

However, the user is also able to send messages to

the sensor which change the temperature threshold

state values. This is a relatively rare event but the

sensor must support it. The need to receive messages

has implications for duty cycle and as such power

consumption. A 100% duty cycle would ensure that

the sensor did not miss any temperature threshold

configuration messages but use a prohibitive amount of

power. A low duty cycle would conserve energy but risk

the sensor missing configuration messages.

The answer to this apparent conundrum is the Friend

node and the concept of friendship.

Nodes like the temperature sensor in the example may

be designated Low Power nodes (LPNs) and a feature

flag in the sensor’s configuration data will designate the

node as such.

LPNs work in tandem with another node, one which

is not power-constrained (e.g. it has a permanent AC

power source). This device is termed a Friend node.

The Friend stores messages addressed to the LPN and

delivers them to the LPN whenever the LPN polls the

Friend node for “waiting messages”. The LPN may poll

the Friend relatively infrequently so that it can balance

its need to conserve power with the timeliness with

which it needs to receive and process configuration

messages. When it does poll, all messages stored by

the Friend are forwarded to the LPN, one after another,

with a flag known as MD (More Data) indicating to the

LPN whether there are further messages to be sent from

the Friend node.

The relationship between the LPN and the Friend node

is known as friendship. Friendship is key to allowing

very power constrained nodes which need to receive

messages, to function in a Bluetooth mesh network

whilst continuing to operate in a power-efficient way.

Proxy Nodes
There are an enormous number of devices in the

world that support Bluetooth LE, most smartphones

and tablets being amongst them. In-market Bluetooth

devices, at the time Bluetooth mesh was adopted, do

© 2017 Bluetooth SIG Proprietary. 16

back to contents Bluetooth Mesh Networking / An Introduction for Developers

not possess a Bluetooth mesh networking stack. They

do possess a Bluetooth LE stack however and therefore

have the ability to connect to other devices and interact

with them using GATT, the Generic Attribute Profile.

Proxy nodes expose a GATT interface which Bluetooth

LE devices may use to interact with a mesh network.

A protocol called the Proxy Protocol, intended to be

used with a connection-oriented bearer, such as GATT

is defined. GATT devices read and write Proxy Protocol

PDUs from within GATT characteristics implemented by

the Proxy node. The Proxy node transforms these PDUs

to/from mesh PDUs.

In summary, Proxy nodes allow Bluetooth LE devices

that do not possess a Bluetooth mesh stack to interact

with nodes in a mesh network.

Node Configuration
Each node supports a standard set of configuration

states which are implemented within the standard

Configuration Server Model and accessed using the

Configuration Client Model. Configuration State

data is concerned with the node’s capabilities and

behavior within the mesh, independently of any specific

application or device type behaviors.

For example, the features supported by a node, whether

it is a Proxy node, a Relay node and so on, are indicated

by Configuration Server states. The addresses to which a

node has subscribed are stored in the Subscription List.

The network and subnet keys indicating the networks

the node is a member of are listed in the configuration

block, as are the application keys held by the mode.

A series of configuration messages allow the

Configuration Client Model and Configuration Server

Model to support GET, SET and STATUS operations on

the Configuration Server Model states.

proxy nodes

P

14 June 2017 / Bluetooth SIG Proprietary 45

Proxy Nodes allow standard, in-market
Bluetooth low energy devices to

communicate with a mesh network

Proxy Nodes implement 2 GATT services :

Mesh Provisioning Service

Mesh Proxy Service

This is huge!

Figure 6 - Smartphone communicating via a mesh proxy node.
P = proxy function on

back to contents Bluetooth Mesh Networking / An Introduction for Developers

4.0
mesh system
architecture

© 2017 Bluetooth SIG Proprietary. 17

© 2017 Bluetooth SIG Proprietary. 18

back to contents Bluetooth Mesh Networking / An Introduction for Developers

4.0 Mesh System Architecture

Overview
In this section, we’ll take a closer look at the Bluetooth

mesh architecture, its layers and their respective

responsibilities. We’ll also position the mesh

architecture relative to the Bluetooth LE

core architecture.

At the bottom of the mesh architecture stack, we have

a layer entitled Bluetooth LE. In fact, this is more than

just a single layer of the mesh architecture, it’s the

full Bluetooth LE stack, which is required to provide

fundamental wireless communications capabilities

which are leveraged by the mesh architecture which sits

on top of it. It should be clear that the mesh system is

dependent upon the availability of a Bluetooth LE stack.

We’ll now review each layer of the mesh architecture,

working our way up from the bottom layer.

Bearer Layer
Mesh messages require an underlying communications

system for their transmission and receipt. The bearer

layer defines how mesh PDUs will be handled by a given

communications system. At this time, two bearers are

defined and these are called the Advertising Bearer and

the GATT Bearer.

The Advertising Bearer leverages Bluetooth LE’s GAP

advertising and scanning features to convey and receive

mesh PDUs.

The GATT Bearer allows a device which does not

support the Advertising Bearer to communicate

indirectly with nodes of a mesh network which do,

using a protocol known as the Proxy Protocol. The

Proxy Protocol is encapsulated within GATT operations

involving specially defined GATT characteristics. A mesh

Proxy node implements these GATT characteristics and

supports the GATT bearer as well as the Advertising

Bearer so that it can convert and relay messages

between the two types of bearer.

Network Layer
The network layer defines the various message

address types and a network message format which

allows transport layer PDUs to be transported by the

bearer layer.

It can support multiple bearers, each of which may have

multiple network interfaces, including the local interface

which is used for communication between elements that

are part of the same node.

The network layer determines which network

interface(s) to output messages over. An input filter

is applied to messages arriving from the bearer layer,

to determine whether or not they should be delivered

to the network layer for further processing. Output

messages are subject to an output filter to control

the stack

The mesh protocol sits on top of the core
Bluetooth Low Energy stack

models

foundation models

upper transport layer

lower transport layer

network layer

bearer layer

Bluetooth Low Energy

access layer

14 June 2017 / Bluetooth SIG Proprietary 56Figure 7 - The Bluetooth mesh architecture

© 2017 Bluetooth SIG Proprietary. 19

back to contents Bluetooth Mesh Networking / An Introduction for Developers

whether or not they are dropped or delivered to the

bearer layer.

The Relay and Proxy features may be implemented by

the network layer.

Lower Transport Layer
The lower transport layer takes PDUs from the upper

transport layer and sends them to the lower transport

layer on a peer device. Where required, it performs

segmentation and reassembly of PDUs. For longer

packets, which will not fit into a single Transport PDU,

the lower transport layer will perform segmentation,

splitting the PDU into multiple Transport PDUs. The

receiving lower transport layer on the other device, will

reassemble the segments into a single upper transport

layer PDU and pass this up the stack.

Upper Transport Layer
The upper transport layer is responsible for the

encryption, decryption and authentication of application

data passing to and from the access layer. It also has

responsibility for transport control messages, which

are internally generated and sent between the upper

transport layers on different peer nodes. These include

messages related to friendship and heartbeats.

Access Layer
The access layer is responsible for defining how

applications can make use of the upper transport layer.

This includes:

• Defining the format of application data.

• Defining and controlling the encryption and
 decryption process which is performed in the upper
 transport layer.

• Verifying that data received from the upper transport
 layer is for the right network and application, before
 forwarding the data up the stack.

Foundation Models Layer
The foundation model layer is responsible for the

implementation of those models concerned with the

configuration and management of a mesh network.

Models Layer
The model layer is concerned with the implementation

of Models and as such, the implementation of behaviors,

messages, states, state bindings and so on, as defined in

one or more model specifications.

back to contents Bluetooth Mesh Networking / An Introduction for Developers

5.0
security

© 2017 Bluetooth SIG Proprietary. 20

© 2017 Bluetooth SIG Proprietary. 21

back to contents Bluetooth Mesh Networking / An Introduction for Developers

5.0 Security

Mesh Security is Mandatory
Bluetooth LE allows the profile designer to exploit a

range of different security mechanisms, from the various

approaches to pairing that are possible, to individual

security requirements associated with individual

characteristics. Security is in fact, totally optional, and

its permissible to have a device which is completely

open, with no security protections or constraints

in place. The device designer or manufacturer is

responsible for analyzing threats and determining the

security requirements and solutions for their product.

In contrast, in Bluetooth mesh, security is mandatory.

The network, individual applications and devices are all

secure and this cannot be switched off or reduced in

any way.

Mesh Security Fundamentals
The following fundamental security statements apply to

all Bluetooth mesh networks:

 1. All mesh messages are encrypted
 and authenticated.

 2. Network security, application security and device
 security are addressed independently. See
 “Separation of Concerns” below.

 3. Security keys can be changed during the life of the
 mesh network via a Key Refresh procedure.

 4. Message obfuscation makes it difficult to track
 messages sent within the network providing a
 privacy mechanism to make it difficult to
 track nodes.

 5. Mesh security protects the network against
 replay attacks.

 6. The process by which devices are added to the
 mesh network to become nodes, is itself a
 secure process.

 7. Nodes can be removed from the network securely,
 in a way which prevents trashcan attacks.

Separation of Concerns and Mesh
Security Keys
At the heart of Bluetooth mesh security are three types

of security keys. Between them, these keys provide

security to different aspects of the mesh and achieve a

critical capability in mesh security, that of “separation

of concerns”.

To understand this and appreciate its significance,

consider a mesh light which can act as a relay. In its

capacity as a relay, it may find itself handling messages

relating to the building’s Bluetooth mesh door and

window security system. A light has no business being

able to access and process the details of such messages

but does need to relay them to other nodes.

Figure 8 - security is central to Bluetooth mesh networking

© 2017 Bluetooth SIG Proprietary. 22

back to contents Bluetooth Mesh Networking / An Introduction for Developers

To deal with this potential conflict of interest, the mesh

uses different security keys for securing messages at the

network layer from those used to secure data relating to

specific applications such as lighting, physical security,

heating and so on.

All nodes in a mesh network possess the network
key (NetKey). Indeed, it is possession of this shared

key which makes a node a member of the network. A

network encryption key and a Privacy Key are derived

directly from the NetKey.

Being in possession of the NetKey allows a node to

decrypt and authenticate up to the Network Layer so

that network functions such as relaying, can be carried

out. It does not allow application data to be decrypted.

The network may be sub-divided into subnets and each

subnet has its own NetKey, which is possessed only by

those nodes which are members of that subnet. This

might be used, for example, to isolate specific, physical

areas, such as each room in a hotel.

Application data for a specific application can only be

decrypted by nodes which possess the right application
key (AppKey). Across the nodes in a mesh network,

there may be many distinct AppKeys but typically, each

AppKey will only be possessed by a small subset of the

nodes, namely those of a type which can participate in a

given application. For example, lights and light switches

would possess the lighting application’s AppKey but not

the AppKey for the heating system, which would only be

possessed by thermostats, valves on radiators and so on.

AppKeys are used by the upper transport layer to

decrypt and authenticate messages before passing them

up to the access layer.

AppKeys are associated with only one NetKey. This

association is termed “key binding” and means that

specific applications, as defined by possession of a

given AppKey, can only work on one specific network,

whereas a network can host multiple, independently

secure applications.

The final key type is the device key (DevKey). This is a

special type of application key. Each node has a unique

DevKey known to the Provisioner device and no other.

The DevKey is used in the provisioning process to secure

communication between the Provisioner and the node.

Node Removal, Key Refresh and
Trashcan Attacks
As described above, nodes contain various mesh

security keys. Should a node become faulty and need to

be disposed of, or if the owner decides to sell the node

to another owner, it’s important that the device and the

keys it contains cannot be used to mount an attack on

the network the node was taken from.

A procedure for removing a node from a network is

defined. The Provisioner application is used to add the

node to a black list and then a process called the Key

Refresh Procedure is initiated.

The Key Refresh Procedure results in all nodes in the

network, except for those which are members of the

black list from being issued with new network keys,

application keys and all related, derived data. In other

words, the entire set of security keys which form the

basis for network and application security are replaced.

As such, the node which was removed from the network

and which contains an old NetKey and an old set of

AppKeys, is no longer a member of the network and

poses no threat.

Privacy
A privacy key, derived from the NetKey is used to

obfuscate network PDU header values, such as the

source address. Obfuscation ensures that casual, passive

eavesdropping cannot be used to track devices and the

people that use them. It also makes attacks based upon

traffic analysis difficult.

The degree of security offered in this technique is fit

for purpose.

© 2017 Bluetooth SIG Proprietary. 23

back to contents Bluetooth Mesh Networking / An Introduction for Developers

Replay Attacks
In network security, a replay attack is a technique

whereby an eavesdropper intercepts and captures one

or more messages and simply retransmits them later,

with the goal of tricking the recipient, into carrying out

something which the attacking device is not authorized

to do. An example, commonly cited, is that of a car’s

keyless entry system being compromised by an attacker,

intercepting the authentication sequence between

the car’s owner and the car, and later replaying those

messages to gain entry to the car and steal it.

Bluetooth mesh has protection against replay attacks.

The basis for this protection is the use of two network

PDU fields called the Sequence Number (SEQ) and IV

Index, respectively. Elements increment the SEQ value

every time they publish a message. A node, receiving a

message from an element which contains a SEQ value

less than or equal to that which was in the last valid

message, will discard it, since it is likely that it relates to

a replay attack. IV Index is a separate field, considered

alongside SEQ. IV Index values within messages from a

given element must always be equal to or greater than

the last valid message from that element.

back to contents Bluetooth Mesh Networking / An Introduction for Developers

6.0
Bluetooth
mesh in
action

© 2017 Bluetooth SIG Proprietary. 24

© 2017 Bluetooth SIG Proprietary. 25

back to contents Bluetooth Mesh Networking / An Introduction for Developers

6.0 Bluetooth Mesh in Action

Message Publication and Delivery
A network which uses Wi-Fi is based around a central

network node called a router, and all network traffic

passes through it. If the router is unavailable, the whole

network becomes unavailable.

In contrast, Bluetooth mesh uses a technique known

as managed flooding to deliver messages. Messages,

when published by a node, are broadcast rather than

being routed directly to one or more specific nodes.

All nodes receive all messages from nodes that are in

direct radio range and, if configured to do so, will then

relay received messages. Relaying involves broadcasting

the received message again, so that other nodes, more

distant from the originating node, might receive the

message broadcast.

Multipath Delivery
An important consequence of Bluetooth technology’s

use of managed flooding is that messages arrive at their

destination via multiple paths through the network. This

makes for a highly reliable network and it is the primary

reason for having opted to use a flooding approach

rather than routing in the design of Bluetooth

mesh networking.

Managed Flooding
Bluetooth mesh networking leverages the strengths of

the flooding approach and optimizes its operation such

that it is both reliable and efficient. The measures which

optimize the way flooding works in Bluetooth mesh

networking are behind the use of the term “managed

flooding”. Those measures are as follows:

Heartbeats
 Heartbeat messages are transmitted by nodes

 periodically. A heartbeat message indicates to

 other nodes in the network that the node sending the

 heartbeat is still active. In addition, heartbeat

 messages contain data which allows receiving nodes

 to determine how far away the sender is, in terms of

 the number of hops required to reach it. This

 knowledge can be exploited with the TTL field.

TTL
 TTL (Time To Live) is a field which all Bluetooth mesh

 PDUs include. It controls the maximum number of

 hops, over which a message is relayed. Setting

 the TTL allows nodes to exercise control over relaying

 and conserve energy, by ensuring messages are not

 relayed further than is required.

 Heartbeat messages allow nodes to determine what

 the optimum TTL value should be for each

 message published.

Message Cache
 A message cache must be implemented

 by all nodes. The cache contains all recently seen

 messages and if a message is found to be in the cache,

 indicating the node has seen and processed it before,

 it is immediately discarded.

Friendship
 Probably the most significant optimization mechanism

 in a Bluetooth mesh network is provided by the

 combination of Friend nodes and Low Power nodes.

 As described, Friend nodes provide a message store

 and forward service to associated Low Power nodes.

 This allows Low Power nodes to operate in a highly

 energy-efficient manner.

Traversing the Stack
A node, receiving a message, passes it up the stack from

the underlying Bluetooth LE stack, via the bearer layer to

the network layer.

The network layer applies various checks to decide

whether or not to pass the message higher up the stack

or to discard it.

© 2017 Bluetooth SIG Proprietary. 26

back to contents Bluetooth Mesh Networking / An Introduction for Developers

In addition, PDUs have a Network ID field, which

provides a fast way to determine which NetKey the

message was encrypted with. If the NetKey is not

recognized by the network layer on the receiving node,

this indicates it does not possess the corresponding

NetKey, is not a member of that subnet and so the PDU

is discarded. There’s also a network message integrity

check (MIC) field. If the MIC check fails, using the

NetKey corresponding to the PDUs Network ID, then the

message is discarded.

Messages, are received by all nodes in range of the

node that sent the messages but many will be quickly

discarded when it becomes apparent they are not

relevant to this node due to the network or subnet(s) it

belongs to.

The same principle is applied higher up the stack in

the upper transport layer. Here though, the check is

against the AppKey associated with the message, and

identified by an application identifier (AID) field in the

PDU. If the AID is unrecognized by this node, the PDU is

discarded by the upper transport layer. If the transport

message integrity check (TransMIC) fails, the message

is discarded.

back to contents Bluetooth Mesh Networking / An Introduction for Developers

7.0
Bluetooth
mesh — new
frontiers

© 2017 Bluetooth SIG Proprietary. 27

© 2017 Bluetooth SIG Proprietary. 28

back to contents Bluetooth Mesh Networking / An Introduction for Developers

7.0 Bluetooth Mesh — New Frontiers

This paper should have provided the reader with an

introduction to Bluetooth mesh, its key capabilities,

concepts and terminology. It’s Bluetooth but not as we

know it. It’s a Bluetooth technology that supports a new

way for devices to communicate using a new topology.

Most of all, it’s Bluetooth that makes this most pervasive

of low power wireless technologies, a perfect fit for

a whole new collection of use cases and

industry sectors.

References
[1] Bluetooth SIG, Bluetooth Mesh Specification
 See: www.bluetooth.com/specifications/adopted-specifications

[2] Bluetooth SIG, Bluetooth Mesh Model Specification
 See: www.bluetooth.com/specifications/adopted-specifications

[3] Bluetooth SIG, Bluetooth 5 Core Specification
 See: www.bluetooth.com/specifications/adopted-specifications

[4] Bluetooth SIG, Bluetooth Core Specification Supplement
 See: www.bluetooth.com/specifications/adopted-specifications

